Search results for "Hepatotoxicity mechanisms"

showing 1 items of 1 documents

Customised in vitro model to detect human metabolism-dependent idiosyncratic drug-induced liver injury

2017

Drug-induced liver injury (DILI) has a considerable impact on human health and is a major challenge in drug safety assessments. DILI is a frequent cause of liver injury and a leading reason for post-approval drug regulatory actions. Considerable variations in the expression levels of both cytochrome P450 (CYP) and conjugating enzymes have been described in humans, which could be responsible for increased susceptibility to DILI in some individuals. We herein explored the feasibility of the combined use of HepG2 cells co-transduced with multiple adenoviruses that encode drug-metabolising enzymes, and a high-content screening assay to evaluate metabolism-dependent drug toxicity and to identify…

0301 basic medicineDrugCYP2B6Drug-induced liver injuryHealth Toxicology and Mutagenesismedia_common.quotation_subjectPopulationDrug Evaluation PreclinicalPharmacologyToxicologyHepatotoxicity mechanismsGene Expression Regulation EnzymologicOrgan Toxicity and MechanismsAdenoviridae03 medical and health sciences0302 clinical medicineCYPToxicity TestsHumansCytochrome P450 Family 2educationmedia_commonMembrane Potential Mitochondrialeducation.field_of_studyCYP3A4biologyCytochrome P450IdiosyncrasyHep G2 CellsGeneral MedicineCYP2E1Recombinant ProteinsHigh-Throughput Screening Assays030104 developmental biology030220 oncology & carcinogenesisInactivation MetabolicToxicityCell modelbiology.proteinChemical and Drug Induced Liver InjuryReactive Oxygen SpeciesDrug metabolism
researchProduct